
Markthochlauf des Wasserstoffs – Hürden und Maßnahmen

"Megatrend Wasserstoff" I Dr. Kattenstein I DMT ENERGY ENGINEERS | 09.10.25

TUVNORDGROUP

Agenda

- 1 Vorstellung DMT ENERGY ENGINEERS
- 2 Status des Wasserstoffhochlaufs
- Fokus auf Wasserstoffherkunft Kosten und Preise
- 4 Regionaler Wasserstoff
- 5 Fazit und Maßnahmen

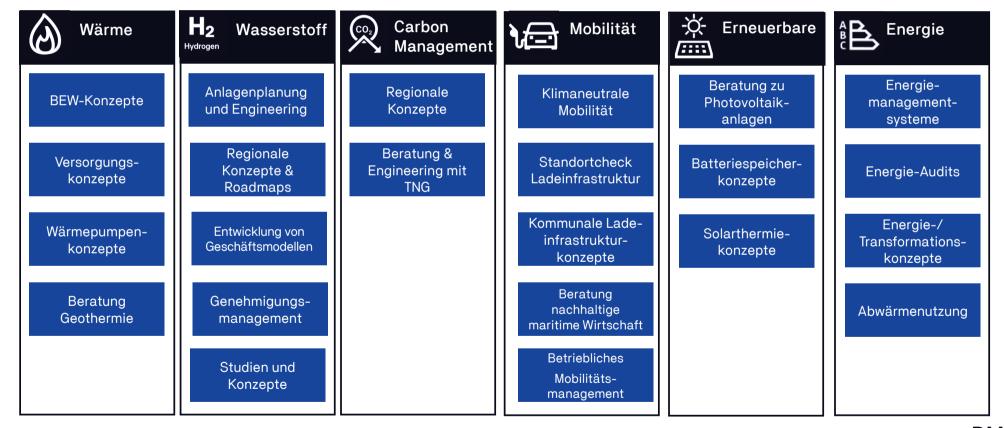
Vorstellung DMT ENERGY ENGINEERS

Unser Unternehmen

> 25 Jahre erfolgreich am Markt

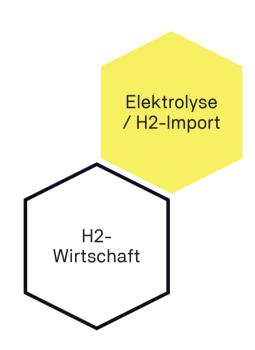
Unser Standort: Technologiepark TÜV NORD GROUP in Essen

40 Mitarbeitende gehören zu unserem interdisziplinären und erfahrenen Team

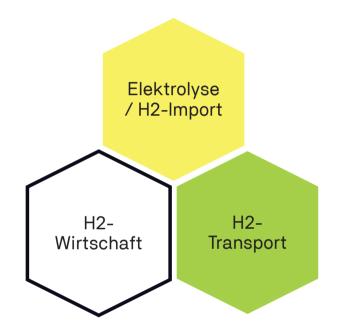


Consulting- und Engineering-Dienstleistungen mit Fokus Nachhaltigkeit

Unsere Kompetenzen: Consulting- und Engineering


Entwicklung und Umsetzung ganzheitlicher Nachhaltigkeitsmaßnahmen

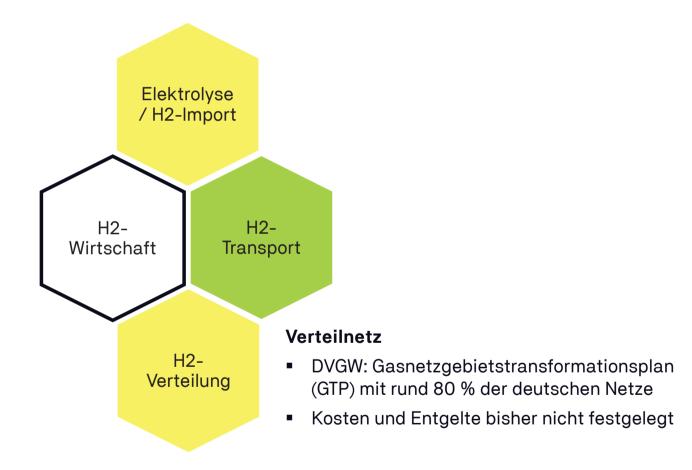
Status des Wasserstoffhochlaufs



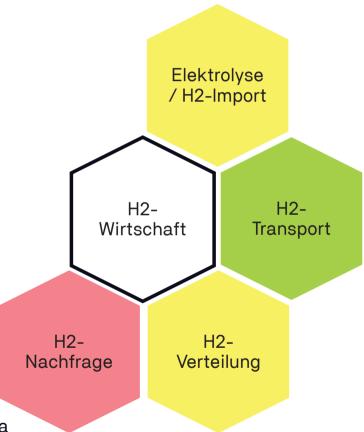
Elektrolyse-Projekte 2030

- 8,2 GW_{el} angekündigt
- 1,2 GW_{el} mit FID
- 0,12 GW_{el} in Betrieb

Import


- Erste H2-Global-Ausschreibungen
- Häfen bereiten Infrastrukturen vor

Kernnetz

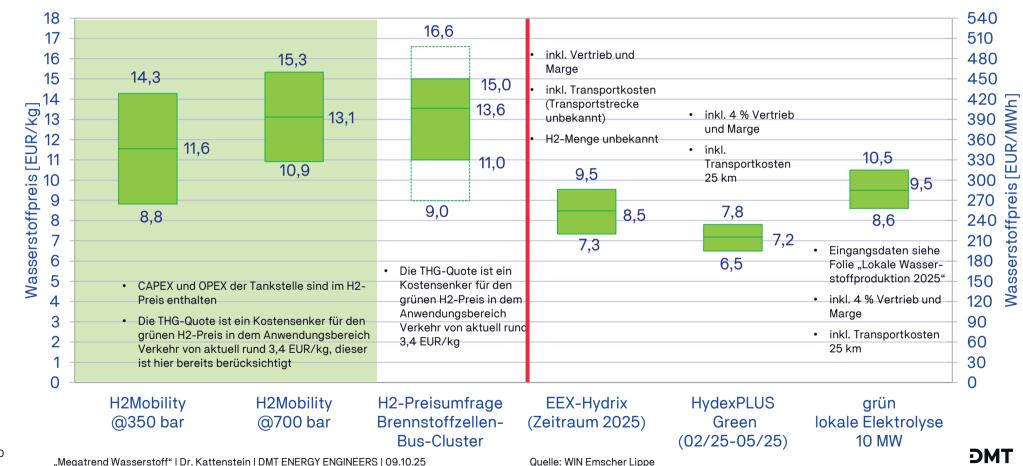

- 9.000 km bis 2032, 525 km fertig
- Amortisationskonto sowie Hochlaufentgeld festgelegt (25 €/kWh/h/a)

H2-Nachfrage:


- 55 TWh/a fossiler
 Wasserstoff in der Industrie
- Kaum Nachfrage in neuen Industrie-/Energieanwendungen
- Mobilität: 100 H2-Tankstellen und über 800 H2-Busse
- Langfristiger Bedarf bis 500 TWh/a

Marktentwicklung

- Bisher 1:1 Kundenbeziehungen
- Kein Marktplatz
- Kaum Preistransparenz
- Fehlende Anreize für Ankerkunden

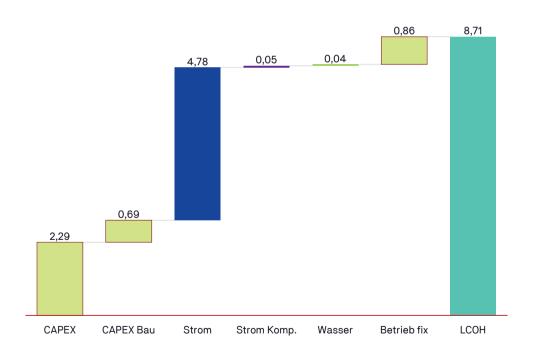

Regulatorik/Genehmigung ■ H2-Beschleunigungsgesetz steht bevor Regulatorik/ Elektrolyse Genehmigung RFNBO-Kriterien für grünen / H2-Import H2 liegen vor RED II und III-Quoten H2-H2-Markt-Transport Wirtschaft entwicklung H2-H2-Nachfrage Verteilung

Fokus auf Wasserstoffherkunft -Kosten und Preise

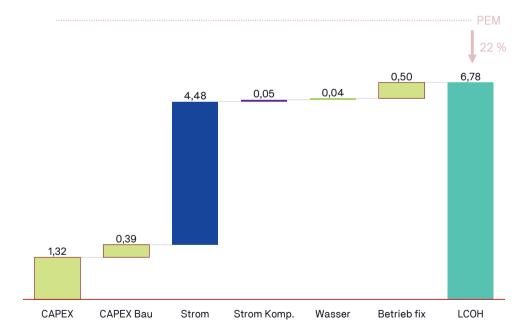
Heutige Preise

Aktuelle Wasserstoffpreise, netto

Grüner Wasserstoff 2025



ENERGY ENGINEERS


Aktuelle Preise für die dezentrale H2-Produktion

Lokale Wasserstoffproduktion 2025 - Vergleich eines 10-MW-PEM & 100-MW-AEL-Elektrolyseurs

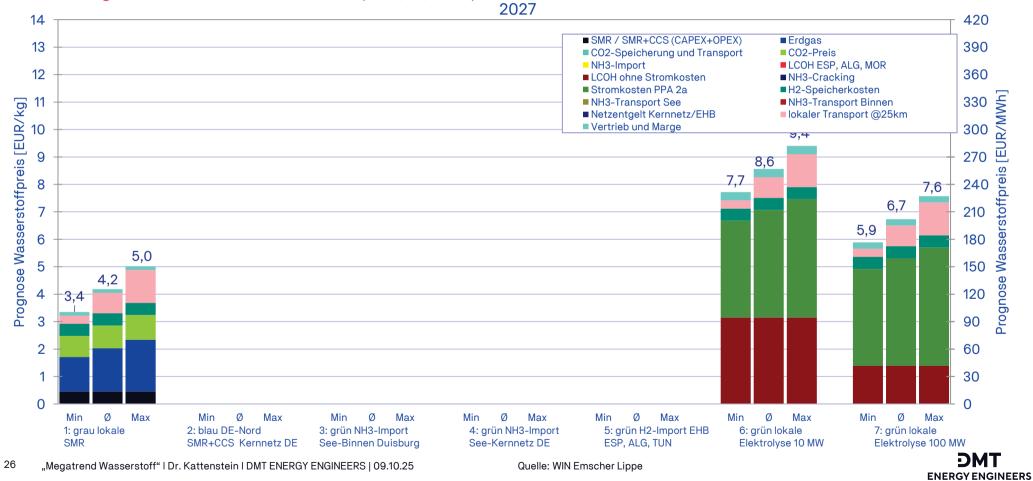
Wasserstoffpreis exkl. Speicher, lok. Transport und Marge [€/kg] – **10 MW PEM**

Wasserstoffpreis exkl. Speicher, lok. Transport und Marge [€/kg] – **100 MW AEL**

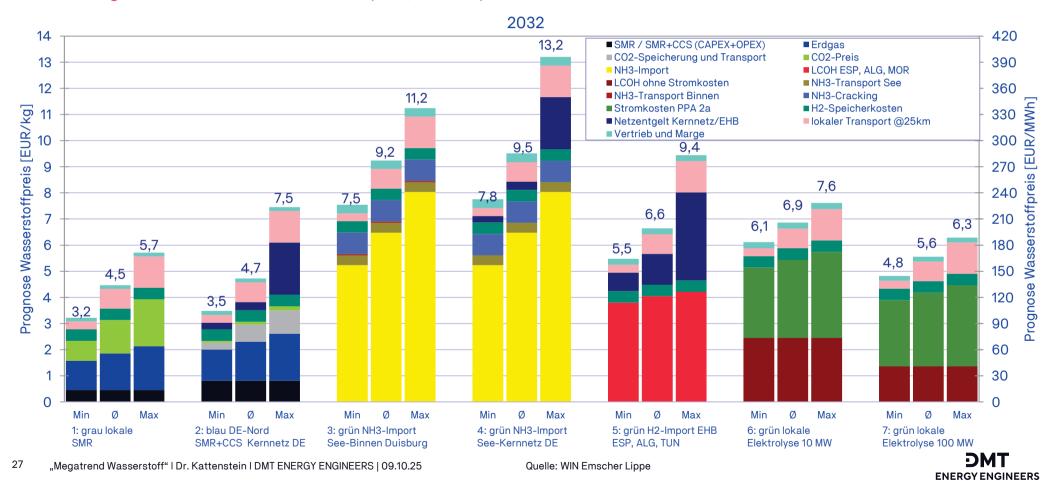
Zukünftige Preise

Pfade für den Wasserstoff in Emscher-Lippe-Region

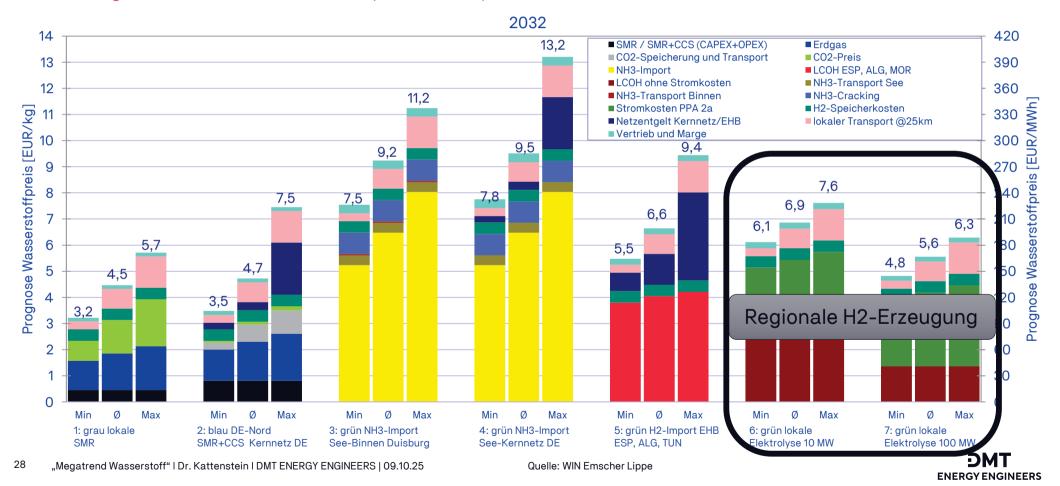
Pfadanalyse: Produktionsart und Transportpfade in die Region Emscher-Lippe

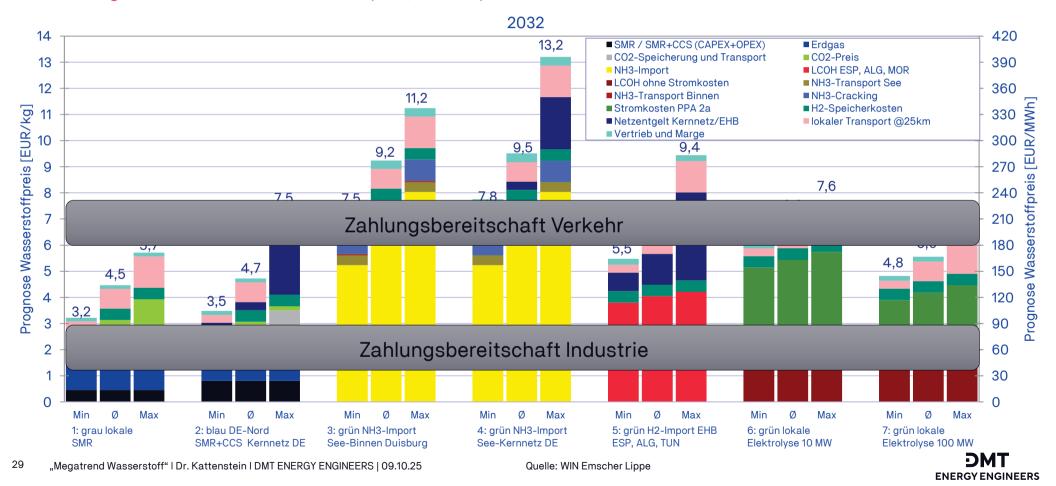

Jahr	2027	2028	2029	2030	2031	2032
Pfad 1: Grauer H2 per Dampfreformierung in der Region EL	Marl					
Pfad 2: Blauer H2 per Dampfreformierung und CCS, Transport per Kernnetz						
Pfad 3: Grüner H2 per NH3- Derivatetransport per See bis Rotterdam, Binnenschiff nach Duisburg, NH3-Cracking						
Pfad 4: Grüner H2 per NH3- Derivatetransport per See an DE- Häfen, Kernnetztransport						
Pfad 5: Grüner H2 aus Spanien, Marokko, Algerien per Kernnetz						
Pfad 6 und 7: Grüner H2 per Elektrolyse vor Ort						5

Pfade für den Wasserstoff in Emscher-Lippe-Region


Pfadanalyse: Produktionsart und Transportpfade in die Region Emscher-Lippe

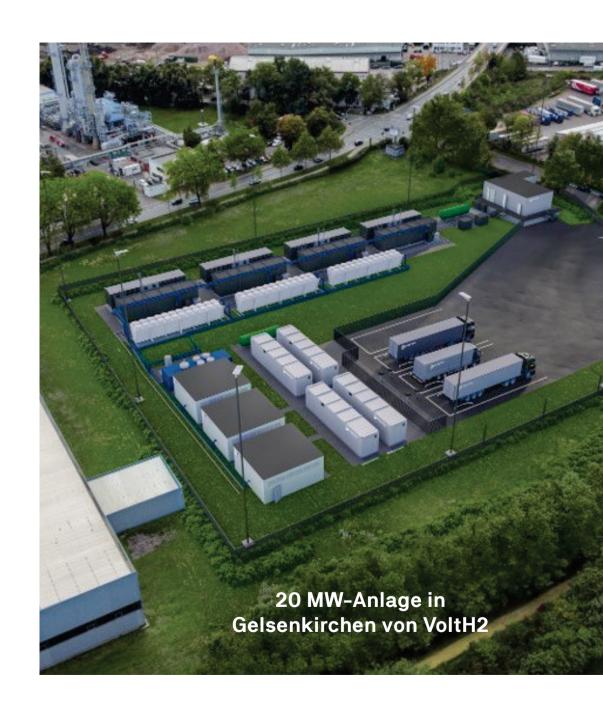
Jahr	2027	2028	2029	2030	2031	2032
Pfad 1: Grauer H2 per Dampfreformierung in der Region EL	Marl					
Pfad 2: Blauer H2 per Dampfreformierung und City: Transport per Kernnetz Nach aktuellem	Informations	sstand wäch	st die Anzah	nl an zur Vert	fügung	
Pfad 3: Grüner H2 per die Region, was Derivatetransport per Rotterdam, Binnenschauswirken dürft Duisburg, NH3-Crackir Negativ:	sich preisse e	nkend in dei	n entstehen	iden Wasser	stoffmarkt	
Pfad 4: Grüner H2 per Für viele Projekt Derivatetransport per entscheidunger Häfen, Kernnetztrans	n getroffen w er → hohes R	orden und d isiko, dass d	ie letzten Inf ie Proiekte d	ormationen		
Pfad 5: Grüner H2 aus Spanien, Marokko, Algerien per Kernnetz	tzt werden g	egenüber ur	sprünglicher	n Angaben		
Pfad 6 und 7: Grüner H2 per Elektrolyse vor Ort						5


Darstellung Kostenbestandteile 2027 (Min, Ø, Max)


Darstellung Kostenbestandteile 2032 (Min, Ø, Max)

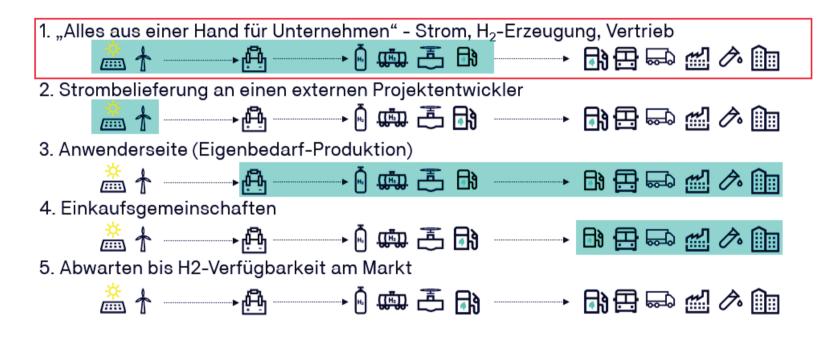
Darstellung Kostenbestandteile 2032 (Min, Ø, Max)

Darstellung Kostenbestandteile 2032 (Min, Ø, Max)



Regionaler Wasserstoff

Regionaler Wasserstoff


Was sind die Vorteile

- Stärkung der regionalen Wirtschaft
- o Bessere Versorgungssicherheit und -qualität
- Nutzung vorhandener Infrastrukturen
- o Flexiblere Anpassung an lokale Ressourcen
- Kürzere Transportwege
- Umweltvorteile
- Förderung der Akzeptanz

Regionale Elektrolyse

Was sind mögliche Geschäftsmodelle

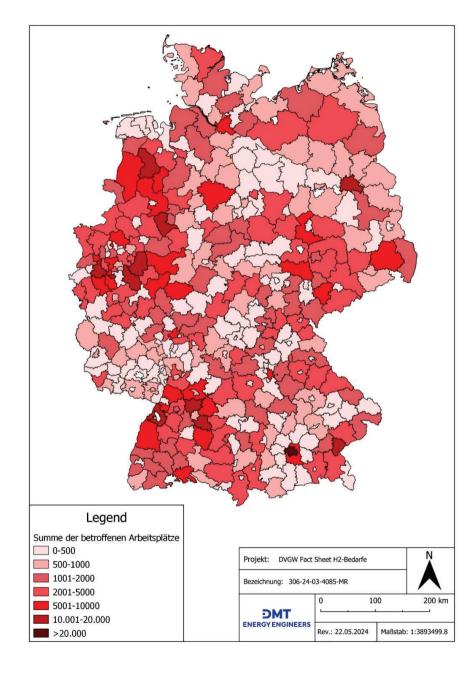
Unternehmung

Welche Wertschöpfung kann generiert werden?

Analyse entlang der Stufen der Wasserstoffkette

Wertschöpfung	Branche/ Sektor	Stärke	Schwäche	Potenzial	Empfehlung
H ₂ -Erzeugung	Energieversorger, Investoren etc.	Viele potenzielle Akteure, Nachfrage perspektivisch vorhanden	Erneuerbares Potenzial begrenzt	Mittel/Hoch	Projekte umsetzen, um H₂-Wertschöpfung unabhängig von Kernnetz zu starten
Verteilung und Infrastruktur – H₂ über Leitung	Netzbetreiber, Energiehändler etc.	RKN Teil des Kernnetzes, weitere Leitungen geplant	Nachfrage an Netzanschluss noch begrenzt	Sehr hoch	Infrastrukturausbau ist Basis für H2-Wirtschaft und sollte daher breit gestützt werden
Verteilung und Infrastruktur – NH₃ als Derivat	Hafen, Energiehändler, Chemie, Industriegase	Anlandung an Rhein- Häfen möglich, chem. Industrie, NH ₃ -Nutzung (stofflich), Flächen für Cracker möglich	Flächenverfügbarkeit (Für größere Cracker im Hafen Neuss)	Sehr hoch	Cracker-Projekt als Leuchtturm, Unterstützung bzgl. Flächen, Genehmigung
Anwendung – Industrie	Aluminium, Chemie, Lebensmittel, Maschi- nenbau, Papier etc.	Energieintensive Industrie als potenzieller Großabnehmer für H ₂	Preis und Versorgungs- sicherheit nicht gegeben	Sehr hoch	Industrienachfrage ist wesentlich für H2- Wirtschaft und umge- kehrt. Maßnahmen zur H2-Einführung unter- stützen
Anwendung – Mobilität	Logistik, Hafen, Speditionen etc.	RKN ist Logistik und Mobilitätsschwerpunkt	Kommunale Flotten setzen auf batterie- betriebene Mobilität	Hoch	Aufbau von Mobilitäts- clustern aus Logistikern und Unterstützung von H2-Tankstellen
Anwendung – Umwandlung	Energieversorger/ Kraftwerksbetreiber	Kraftwerksstandorte sind vorhanden	Bisher kein Gas- anschluss vorhanden, wohl aber in Planung	Sehr hoch	Standort Neurath für H2-Gaskraftwerke unterstützen

Quelle: Rhein-Kreis Neuss



Arbeitsplätze Prozesswärme

Bedeutung des H2-Verteilnetzes

- 78 % des Gasbedarfs für Prozesswärme werden in Entfernung von über 1 Kilometer zum Kernnetz entstehen
- Insgesamt sind 770.000 Arbeitsplätze betroffen, dies entspricht 10 % der Beschäftigten im Verarbeitenden Gewerbe
- Ländliche Gebiete (z.B. südliches Mecklenburg-Vorpommern) und städtische Ballungsräume (München, Berlin, Hamburg) werden von dieser Umstellung betroffen sein

Eine signifikante Anzahl an Arbeitsplätzen hängt deutschlandweit von der Verfügbarkeit von Wasserstoff im Verteilnetz ab!

Fazit und Maßnahmen

Fazit und Maßnahmen

- Wasserstoffwirtschaft ist entscheidend für den vollständigen Übergang zu erneuerbaren Energien und die Defossilisierung der Industrie
- Aktuell stockt der Hochlauf i.W. aufgrund der mangelnden Nachfrage
- · Regionale Initiativen sind erforderlich

Bleibende Herausforderungen:

- Hohe Kosten (RFNBO-Kriterien, Netzentgelte)
- Geringe Nachfrage (Förderung KsNI/KSV, Quoten)
- Regulatorik/Genehmigung ausbaufähig (Verteilnetze, Wasserstoffbeschleunigungsgesetz)
- Markt noch kaum vorhanden (Transparenz, Midstream-Akteur zwischen Erzeuger und Nutzer)

Vielen Dank für Ihre Aufmerksamkeit.

Mit uns die ZUKUNFT.NACHHALTIG.GESTALTEN

Mit uns die ZUKUNFT.NACHHALTIG.GESTALTEN

Dr. Thomas Kattenstein

DMT ENERGY ENGINEERS
Managing Consultant PC Wasserstoff
Mobil: +49 173 251 273 9
kattenstein@energy-engineers.de

