Wasserstoff in der saarländischen Stahlindustrie

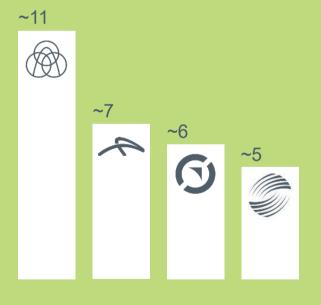
Strategie, Chancen & Herausforderungen

Konrad Wohlfarth, Stahl-Holding-Saar

MCC Megatrend Wasserstoff, Oktober 2025

SHS-Stahl-Holding-Saar: Die SHS ist die Holdinggesellschaft der beiden Stahlhersteller Dillinger und Saarstahl

Überblick Stahl-Holding-Saar: Die SHS ist eines der großen Stahlunternehmen Deutschlands und gleichzeitig der wichtigste Arbeitgeber im Saarland


Größter Arbeitgeber im Saarland

~ 5 Mrd. €
Umsatz pro Jahr

~ 5 Mio. t
Stahlabsatz Pro Jahr

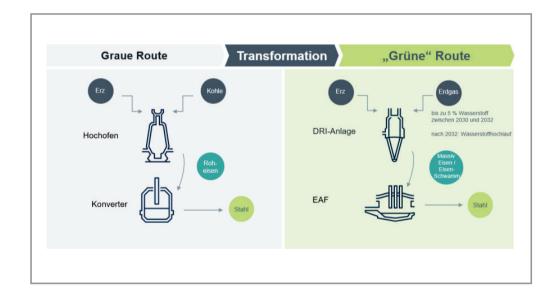
~ 13.000 festangestellte Mitarbeiter

Viertgrößter Stahlhersteller Deutschlands, Mio. t

Teil 1: Power4Steel

Das größte Brownfield-Dekarbonisierungsgprojekt der europäischen Stahlindustrie

Gefördert durch:



Mit Power4Steel setzt die SHS-Gruppe eines der ehrgeizigsten Dekarbonisierungsprojekte der europäischen Stahlindustrie um

Motivation der Dekarbonisierung

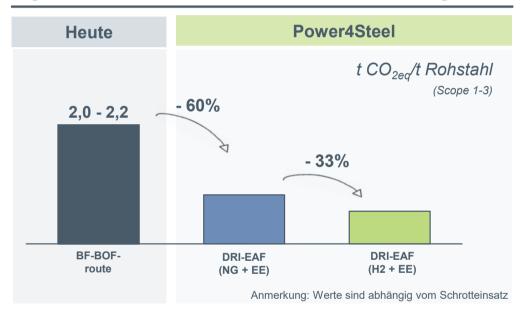
- Die SHS-Gruppe bekennt sich zu den Zielen des Pariser Klimaabkommens und des EU Green Deal
- Aufgrund der steigenden CO₂-Kosten im Rahmen des **EU-Emissionshandelssystems** (EU ETS) ist die heutige **kohlebasierte Stahlproduktion langfristig nicht wettbewerbsfähig!**

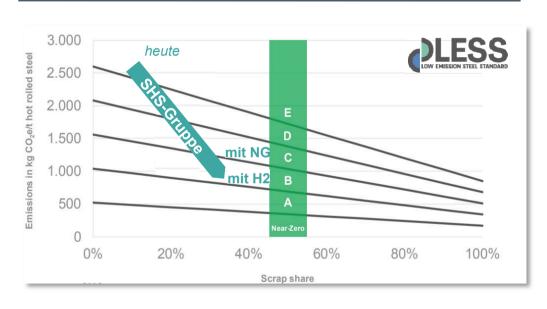
Mit Power4Steel verfolgt die SHS-Gruppe konsequent den Weg der Dekarbonisierung

Power4Steel ist ökologisch und ökonomisch alternativlos!

Investitionsmaßnahmen von 4,6 Mrd. Euro schreiten voran 2,6 Mrd. Euro Förderbescheid erhalten

Power4 Steel





Die Substitution von Kohle durch Erdgas bringt bereits große CO₂-Einsparungseffekte - weitere Reduktion nur mit Wasserstoff möglich

Signifikante CO₂ Reduktion durch DRI-Technologie

Bis zu 60% CO₂ Emissionen können alleine durch den Einsatz von Erdgas erreicht werden – Wasserstoff ist für weitere Reduktionen notwendig Power4Steel ermöglicht durch Wasserstoff eine schrittweise Einordnung in LESS-Label B bis 2030

Durch Erdgas kann bereits LESS-Label C erreicht werden – Wasserstoff ist er Schlüssel um Label B und mehr zu erreichen

Teil 2: Wasserstoff

Strategie, aktueller Stand & Herausforderungen

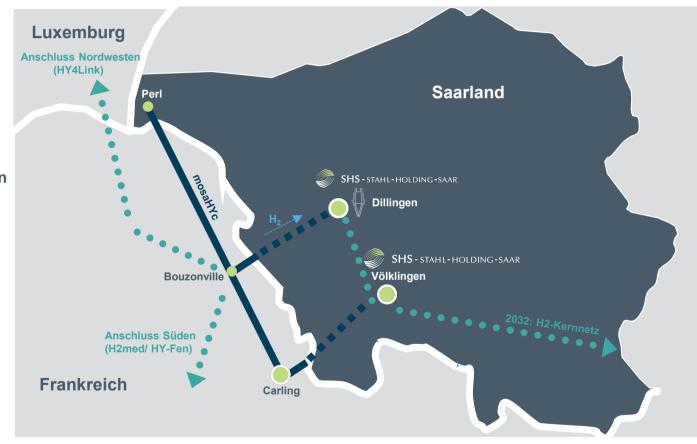
Wasserstoff wird zum zentralen Energieträger der Stahlproduktion – große Volumina müssen wettbewerbsfähig beschafft werden

Anfangsphase 2029 ff.

Aufbau einer regionalen Wasserstoffwirtschaft und Sicherstellung des Anschlusses an das Wasserstoff-Backbone

Weitere Entwicklung

Weltweiter Einkauf der wettbewerbsfähigsten Mengen an Wasserstoff


Bis zu 120 kt

Kernnetz-Anschluss

6 kt

1. Strategischer Schritt: Um SHS kostenoptimal aufzustellen, wird "mosaHYc" als Basis für ein überregionales Sourcing realisiert

MosaHYc im Zentrum der zukünftigen europäische H2-Infrastrukutr

Quelle: h2inframap.eu

Umstellung Gasleitung

Neubau

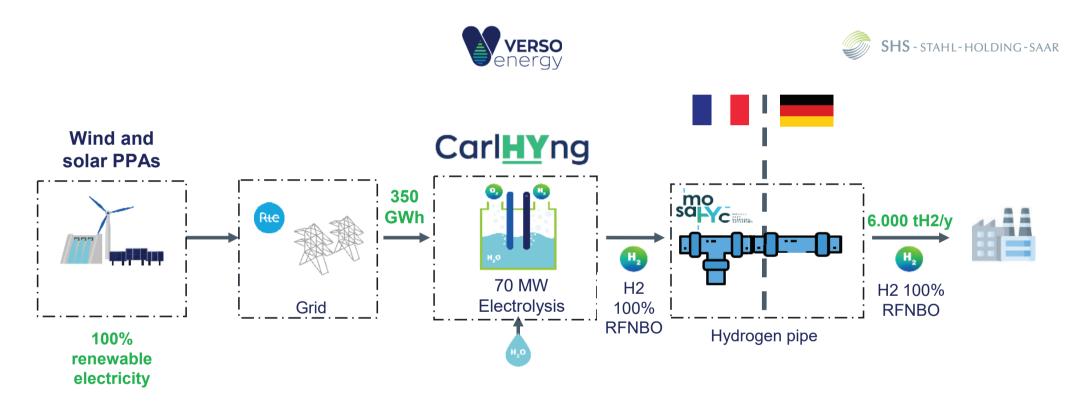
Perspektivischer Anschluss

We are Pure Steel+

2. Strategischer Schritt: Beginn des lokalen Wasserstoff-Sourcings als Startschuss zur wasserstoffbasierten Stahlproduktion an der Saar

Die Transformation schreitet voran:

SHS-Gruppe und Verso Energy unterschreiben wegweisenden Wasserstoff-Vertrag


05.09.2025

Key Facts zum Projekt

- Start der Wasserstoffausschreibung im März 2024
- Vergabe an Verso Energy am 05.09.2025
- Beginn der Wasserstoffbelieferung in 2029
- ➤ Einspeisung der H₂-Mengen in grenzüberschreitendes Inselnetz "mosaHYc"

Verso Energy liefert ab 2029 die ersten Wasserstoffmengen zur Grünstahlproduktion ins Saarland

Die Herausforderungen der lokalen H₂-Beschaffung sind eine Blaupause für die generellen Herausforderungen des Wasserstoffhochlaufs

Problem: Kostendifferenz zwischen Erdgas und Wasserstoff zu hoch sowie fehlende willingness-to-pay auf Abnehmerseite

Mehr Pragmatismus: Abbau der Überregulierung (Farbenlehre, Strombeschaffungskriterien, begrenzte Entgeltbefreiungen für ELYs,...)

Aufbau und Absicherung der Infrastruktur: Effiziente und bezahlbare Synchronisation von Angebot und Nachfrage (Kernnetz, Importterminals, Speicherung,...)

Nachfrage-Anreize: Schaffen von Abnehmermärkten für kohlenstoffarme Stahlprodukte durch Leitmärkte (z.B. Labeling von Grünstahl)

Der Hochlauf kann nur dann funktionieren, wenn der politische Rahmen stimmt!

Die Stahlindustrie ist Ankerkunde des Wasserstoffhochlaufs – die SHS-Gruppe geht voran!

Trotz **ungünstiger politischer Rahmenbedingungen** für den Hochlauf von Wasserstoff wurde ein langfristiger Vertrag mit Verso Energy über die Lieferung von mindestens 6.000 t/Jahr erneuerbarem Wasserstoff unterzeichnet!

Der deutsch-französische Vertrag markiert einen weiteren Meilenstein auf dem Weg zu einer wasserstoffbasierten, klimafreundlichen Stahlproduktion!

Für den großskaligen Einsatz ist Wasserstoff nicht wettbewerbsfähig– der Wasserstoffhochlauf kann nur mit den **richtigen politischen Rahmenbedingunge**n funktionieren: **wettbewerbsfähige Energiepreise, sinnvolle Regulatorik, Leitmärkte und effektiver Schutz vor Carbon Leakage**

Vielen Dank für Ihre Aufmerksamkeit!

